A Prototype for a Si5351-Based SSB Rig

Now that I think I've fairly well determined that the Si5351 is suitable for use in a ham radio transceiver, it seems like time to put thought into action and actually try to build one. Ever since discovering that the Si5351 can output multiple independent clocks from one IC, I thought it would be neat to use one output as a VFO and a second as a BFO. As I showed with my Grabber RX prototype, this is certainly a viable thing to do.

One type of SSB transceiver architecture that I've been experimenting with in the NT7S shack is one using an unidirectional IF for both the receive and transmit signal paths, as opposed to the bidirectional designs seen in radios such as the BITX. The Lichen transceiver seen in Chapter 6 of Experimental Methods in RF Design is a nice example of such a radio. In past experiments, I have switched the VFO and BFO signal paths using analog switch ICs. But I realized that when using the Si5351, all you would need to do to implement this type of architecture is to connect, for example, the CLK0 output to the first mixer and the CLK1 output to the second mixer, then swap the frequencies on each CLK output when switching to transmit.

With that in mind, let me present the block diagram of my implementation of this below:


The mixers are the ubiquitous 602/612 loved and hated by QRP homebrewers around the world. I'm not a huge fan of the 602, but it has a couple of things going for it in this application. First is that there are essentially two inputs and two outputs on the IC, which makes it very handy for this type of design. And while it has fairly atrocious intercept figures, it does reduce component count quite a bit. So you could consider this more of a cheap & cheerful radio for fun, not a design for work in seriously crowded conditions. The rest of the elements in the design are pretty much your standard circuits. Nothing too groundbreaking there. One thing I neglected to put on the diagram above is 10 dB attenuator pads on Si5351 outputs in order to get the ~3 Vpp output down to around the 300 mVpp that the 602 likes to see for oscillator drive.


So here's the beautiful ugly mess on a piece of copper clad. This was originally a CC1 prototype board, but I decided to cannibalize it for this SSB rig since it already had the microcontroller and Si5351A, and because I was feeling too lazy to start from scratch. The radio build only took a couple of half-day sessions in the shack, and worked mostly as expected right off the bat. The T/R VFO and BFO swapping scheme worked perfectly, needing only a few extra lines of code to implement in the already-existing code. I ended up making my first QSO with the rig (5 watts transmitter output) checking into the Noontime Net and getting a S7-S9 report from net control. The second QSO was last night with fellow Oregonian, Joel KB6QVI, who was kind enough to give me a sked in order to check out how the radio was working on the air. Finally, I had a very brief QSO with Dave AA7EE, who gave me an inciteful audio report although we had a poor propagation path between us. Right now, I've got it back off the air to tweak a few thing, such as the audio response in the mic amp, but expect to get it back in working order for use at Field Day.

Overall, I'm pretty happy with the direction this radio is proceeding. If I can get all of the bugs worked out, this could be a pretty potent design. Not in the performance category, but in the cost and component count sense. I'm seriously considering whether it may be feasible to do crowdfunding for a run of kits if I can nail down the design well enough. I have come to believe that the Si5351 could be a game changer for ham radio HF and VHF radio designs.