Two Watts Across the Pacific

I don't know exactly why, but I've had a bit of an obsession with the T32C DXpedition to Kiritimati since they got started a few weeks ago. Maybe because I found them easier to work than many of the DXpeditions that I've tried before. The fact that they are a very well-run operation has something to do with it, I'm sure. Whatever the reason, once I got a few contacts under my belt, I became driven to try to work them on all band slots practical for CW and SSB. I have a ZS6BKW antenna, so I can load it up from 10 to 80 meters. I figured 10 — 80 was a reasonable goal, but I knew the lower bands were going to be tougher since my antenna is only up at about 30 feet.

With the bands being as hot as they have been in the last month or so, it hasn't been a great challenge to fill up the band slot chart for the most part. Almost all of the QSOs made over the last few days have been snagged within one or two calls (I also thank W9KNI's book The Complete DXer for teaching me very valuable basic DXing skills). I will admit that I've been running 100 W output for these QSOs — with one important exception.

20 meters CW was one of the slots that I had not yet filled as of this morning (oddly enough, since that's THE DX band). Over the last few weekends, I've been hacking away on the firmware to the CC-Series, trying to get the last major features up and working bug-free. Thanks to a request from AA7EE, I just implemented XIT on top of the RIT that was already in the firmware (speaking of Dave, go check out his even more impressive T32C QRP story). The nice thing about XIT is that it allows you to relatively easily work split stations like DX, even though there is no "official" dual-VFO capability in the rig. Since the XIT capability seemed to be mostly working correctly, I wanted to put the CC-20 on the air to try it out and be certain. The first station that I worked today with the CC-20 was K6JSS/KL7, operated by well-known Alaskan QRPer AL7FS. It was a simplex QSO, but it was nice to bust the mini-pileup with my first call. While continuing to work on CC-20 development, I monitored the DX cluster to see when T32C would show up on 20 meters. Sure enough, I ended up seeing him pop up on the cluster at about 0200 UTC. Time to put the CC-20 to the test.

I don't have a valiant battle to describe. It took me about 10 calls to finally get him, although there weren't a lot of people calling him. I suspect that the majority of my trouble in getting him was in zero-beating him with the unpackaged encoder knob. While in RIT or XIT mode, pressing in the tune knob toggles between the TX and RX VFOs. Trying to do that quickly when it's not mounted on a chassis is tricky! Regardless, it didn't take long until I heard the sweet sound of my callsign coming back to me across the vast Pacific Ocean. Two watts spanning 3600 miles to a tropical island in the middle of a huge ocean is pretty neat. This doesn't rank in the annals of great QRP achievements, but it will always be a memorable QSO for me.

Another CC-20 Lives

I'm happy to report that the second of four CC-20 beta kits is completed and working! Mikey, WB8ICN got his all finished up with no major problems and made a first QSO with N1WPU. It looks like he made a nice custom enclosure out of some very sturdy copper clad. Very, very nice! Please click on over to Mikey's blog and have a look for yourself.

The First Wild Beta

AA7EE CC-20 Beta 1
AA7EE CC-20 Beta 1 Interior
AA7EE CC-20 Beta 1
AA7EE CC-20 Beta 1

Here it is, the first CC-Series beta unit completed by someone other than me! As is obvious by glancing at the photos, Dave AA7EE has done a magnificent job of assembling the CC-20, as well as creating a custom enclosure for the radio out of red copper clad using the WA4MNT technique. There's really not much more for me to add, except to tell you to get yourself over to Dave's blog to check out his story about the build and to see more shiny photos.

Junkbox

No earth-shattering news to report on the blog, but a few little things to mention (hence the "junkbox" title).

The CC-20 Beta 1 test is proceeding pretty much as planned. As of tonight, AA7EE has his receiver up and running now and a couple of the others are close behind. I'm eagerly awaiting the results of at least a couple of the builds so that I can get moving on the revisions for the Beta 2 circuit (which will hopefully also be the production PCB). I'm anxious to get the business up and running!

I got a very nice mention from Bill Meara on the latest episode of SolderSmoke. He talks up Etherkit and my blog, then mentions that he's going to try to use the single-ended passive MOSFET mixer from the VRX-1 in his homebrew WSPR transceiver. I hope that the experiment works out well for him.

As we approach the halfway point of the gestation of our new little one, I got to thinking about mortality a bit. I hope to be around for a very, very long time to come and have been taking steps to improve my health to make that more probable. But in the awful case that something were to happen to me in an untimely fashion, it seemed that I'd like my family to have a little bit of my own thoughts with which to remember me. At first, I thought that maybe I should do a private journal, but then it occurred to me that wasn't necessary. Barring a complete collapse of civilization, all of my descendants will be able to access an archive of all of my Internet activity. Every blog post, tweet, Google+ post, website comment...and perhaps even my email. If you Google my last name, I'm the first result. I'm active enough online that it's not entirely inconceivable that a reasonable avatar of myself could be created sometime in the distant future (given that Moore's Law holds up in some fashion for the next 50 years or so). Perhaps this is all pie-in-the-sky speculation and will look as foolish as the "flying car future" does to us now, but I'm pretty sure that I'll live on in human information space in some fashion long after I'm gone.

The CC-20 Lives

I'll admit there were times when I thought I might never get this thing working, but dogged persistence in the face of frustration will sometimes get the job done. Failure to accept the mushy and hum-ridden audio finally led me to crack the tough nut.

11 - 1
Today, I finally slew the new CC-20 beta dragon. Without getting into a long, drawn-out rant about what went wrong, I'll just say that transcription errors and schematic capture screw-ups did me in. I believe that at least 5 separate problems with this PCB turn were discovered in the end. All of the errors kind of "stacked up" on each other. Solving one would lead to a marginal, but not final improvement. The big problem is that a couple of those were very subtle errors to troubleshoot.

The big one that finally restored the receiver to the glory that it deserves was a missing decoupling resistor in the IF amplifier. That one little change took the audio from minimally functional, low sensitivity, and full of DDS spurs to the clean, sensitive, and spur-free receiver that I knew the prototype to be. Even after I identified the problem, I almost missed the fix because of some kind of strange routing that I did with the VCC line. But enough banging my head against the bench, and I managed to beat some sense into my brain and fix the problems once and for all.

A bit more tweaking finally got the radio ready to go on the air for its first QSO today. Repeatedly calling CQ on 14.060 MHz resulted in no answers, forcing me to wonder if I screwed something else up, like the carrier oscillator alignment. But I heard a strong station a few kHz down and thought I would try to give them a call instead. It turned out to be KD0V in Minnesota, who was blasting in at a strong 599. He gave me a 559 in return and commented that the transmitted note sounded good to him. Due to my frazzled nerves, I kept the QSO fairly short and called it a day after the exchange of the usual information.

So it looks like the beta kit is finally in a state where I can package it and send it out. Many people will be happy with this news; first and foremost being my wife and the long-suffering beta testers. Let's hope for the best during the beta test and maybe I can get out of this without a permanent nervous condition.

Respect

Update

Here's a quote from Wes describing the equipment that he was using on his end:

I hope that my signal was OK when we worked.   I was in the midst of wrapping up a frequency synthesizer project and had it running on the rig for the first time.   When I heard you on 20, I could not resist calling.  You were the first contact using that source.   But I then discovered that the PLL was oscillating.   It was a low level oscillation and didn't present an obvious problem with regard to what I heard on the air.   But it was there.   I have since then changed the phase/frequency detector circuitry and have eliminated the oscillation.   I am not thrilled with the 74HC4046.    I get much more repeatable performance from a dual D FF with a NAND gate.

That Which Does Not Kill Us

I feel pretty guilty that I've let the blog content slide in 2011. As you can imagine, between having a near-toddler cruising around the house, doing a major redesign of a QRP transceiver, and trying to bootstrap a new small business, free time is at a premium (and my wife and kid owns what little there is). The least that I can do is give you a quick glimpse into the progress with the radio.

If you don't follow me on Twitter, you probably don't know any of the details of my progress with the CC-Series radio. After advancing the design of the radio to a point where I thought it was production-ready (two PCB turns, lots of design review and tweaking), I ended up failing pretty miserably in the end. The problem was with a subtle, but noticeable pull on the free-running VFO on transmit (which was not present on the prototype). I spent close to 2 months attempting to troubleshoot that one little problem, but sadly it ended up defeating me. Perhaps "defeat" isn't the correct word. There was a part of me that wanted to keep stubbornly trying until I tackled the problem (ask poor Jennifer about my stubbornness). But I had to look at the issue realistically, from a business point-of-view. I had no idea if it would take me a few more days or many more months to solve my problem. So in the interest of trying to save my fledgling company, which hasn't even made it out of the nest, I made the difficult decision to temporarily abandon the CC-Series development.

Instead, I decided that I would take on a similar project: revamping my minimalist entry in the 2010 FDIM Challenge (the 72 part rig). It started as just a few upgrades, but quickly spun into a new project of its own. When the VXO scheme that I wanted to try didn't work out as I had hoped, I decided that I would bite the bullet and add a DDS to the project. I planned on reworking the CC-Series with a DDS anyway, so this would be a good way to learn how one works. In order to make the rig worthy to be sold to other people, I kept incorporating changes and features from the CC-Series. I also leveraged my firmware from the CC-Series, which made it easy to get up to speed with the new radio fairly quickly. By now, the rig resembles what I intended the CC-Series to be in the first place.

The new CC-Series?

A few nights ago, I made my first QSO with the rig with W7GVE in AZ. We had a nice little chat and he let me know that I had a little bit of chirp on my signal. Right after I signed off with Ed, I got a really pleasant surprise. Who else but the great father of us QRP homebrewers, W7ZOI! He dropped in to give me a quick "hi" when he heard me on the QRP watering hole of 14.060 MHz. According to my (admittedly incomplete) log on my PC, this was my first QSO with Wes. It was a great thrill, but unfortunately I missed about 25% of his transmissions because I was too nervous to copy CW well. I fully admit that my CW is still lousy, and my comprehension drops off the cliff when the other guy is going greater than about 15 WPM and I'm jittery.

I made some tweaks to the transmitter (and torched some finals in a spectacular, fireworks fashion), then managed to make a sked with one of my partners in crime, AA7EE. It was a rough QSO, especially for me, but we exchanged signal reports so it counted (20 meters at 2200 local on a short path between us is not conducive to communication). Better yet, Dave reported that the signal was rock-solid and chirp-free.

So where do we stand now? I want to do a little more on-the-air testing, then I'm going to start laying out the PCB. The last time I ordered prototype PCBs from my vendor, they were very high-quality, but the turn around time was less than desirable (nearly 3 weeks). This time, I'm going to see if I can lay out the board with minimum vias (probably not going to happen). If I can do that, I might be able to make my own board with the toner transfer method. If not, then I'm going to look into a vendor that can give me boards with more alacrity, at least for the prototypes.

It's been frustrating, but it's also forced me to refine all of the circuits in my radio in order to make them as bulletproof as possible. As long as I can get this puppy to market, then it will have been worth the heartache.

Update

Last night, I had another QSO with AA7EE so that he could record my transmissions and send me back the recording for evaluation. We had talked about meeting sometime after dinner, but set no specific time. Right around 1900 local, I fired up the rig on 14.060 MHz and was just getting ready to send a tweet to Dave to see if he was around. Within about 30 seconds of turning on the rig, I heard someone calling CQ on the watering hole frequency. Sure enough, it was AA7EE. I established contact and we had a quick little chat. Thanks to Dave's generosity, I've posted his recording of the QSO below.  The QSB was bad on my end, but as you can hear from the recording it wasn't very bad on his end. Even though the signal was weak, the note from the rig sounds clean, stable, and chirp-free. Be sure to stick around to the end of the recording for a few moments of commentary from Dave himself.

AA7EE-NT7S - 0217 - 24 May 2011
nt7s-aa7ee-5-24-0213z-14060.mp3

What's Going On With The CC-40?

Things have been a bit quiet on the blog front as I work to get the CC-40 beta up and running. Last month, I had an initial set of beta PCBs manufactured, but I made a really big mistake. Somehow I bungled the footprint of the ATmega168 microcontroller, and it ended up much smaller than it should have been. I managed to wire the microcontroller to the PCB using 30 AWG Kynar, but another problem manifested itself. The wires acted like an antenna and radiated the 16 MHz clock all over the board, causing a high pitched whine in the audio. I continued to build the board, and for the most part, the rest of it worked as expected, but I couldn't release a board with such an obvious fault to the beta testers. It was probably a good thing that I was forced to spin the board again, as I found some other subtle problems that needed to be corrected. The new PCB design was submitted to the PCB vendor early this morning, and with any luck the new board will be here in about two weeks.

The current beta test unit is still usable, especially if I hook it up to my external AF amp, which cuts off high frequencies pretty well. Early this morning, I shot a video comparing CC-40 to my SW-40. I'm listening to JA1NUT and manually switching between the CC-40 and the SW-40. It's not a great indicator of the performance, but at least it will give you a little taste of the character of the radio.

While I wait for the new beta PCBs to get here, I've still got plenty of work to do in preparing documentation, setting up my shipping station, and getting my web shopping cart configured. We're also going through the fun of Noah teething, so sleep is at a bit of a premium for us at the moment. With any luck, the next update will be some happy news about how the new beta PCBs work great!