Wideband Transmission #5

Latest CC1 Progress

image

As you can see from the above photo, I have finished a significant portion of the digital side of the newest CC1 prototype and now I'm on to the receiver section. This weekend I finished my first pass of the audio chain and characterized the gain and frequency response of the chain. Next up is the design of the IF and front end of the receiver. This time I plan to do a much better job of characterizing the performance of entire radio, designing for specific critical receiver specifications, and iterating the design as necessary instead of holding on to dodgy performance from circuits.

Mixer Investigations and the Search for Better Dynamic Range

Since I decided to ditch the dual-gate MOSFET mixer front end, I've been considering what to replace it with. At first, I was thinking about using the ADE-1 for the mixer and product detector, but I've been intrigued with reading about H-Mode mixers over the last few weeks, which led me to the similar, but simpler KISS mixer by Chris Trask. That seemed like a good candidate for the CC1, with relative simplicity and better-than-average performance. Since good IP3 performance is the main characteristic of this mixer, I wanted to try measuring IIP3 at my own bench to see how it looked in a home made circuit with less than optimal parts and layout.

To get warmed up, I first attempted to measure the IIP3 of a few parts that I had on hand where I already knew IIP3 values to expect: the SBL-1 and the ADE-1. Using a DG1022 as the signal generators, my HFRLB as a hybrid combiner, and the DSA815TG, I was able to measure an IIP3 of +13 dBm for the SBL-1 and +17 dBm for the ADE-1, which is pretty much right on what other people have published.

image

Here is my test setup for measuring the KISS mixer performance. I deviated from the circuit described in the KISS mixer white paper in a few ways. First, I used a TI TS5A3157 analog switch, as I didn't have any Fairchild FST3157 on hand. I also used a hand-wound trifilar transformer on a BN2402-43 core instead of a nice transfomer from a company like Mini-Circuits. I drove the KISS mixer with +3 dBm from a Si5351. My measurement of IIP3 for this variant of the KISS mixer came out to +27 dBm, which seems reasonable given the poorer components I was using. Conversion loss was 7 dB. I'm going to try to measure it again with an actual FST3157 and a Mini-Circuits transformer in the near future, so it will be interesting to how much that will improve the IMD performance.

But honestly, I probably won't need better than +27 dBm performance if this mixer is used in the CC1. Since the CC1 is meant to be a trail-friendly radio with modest current consumption, I don't think I want to include the high current amplifier needed after the KISS mixer to get maximum performance out of it. Which is kind of a shame, but I figure that I should be able to keep RX current to around 50 to 60 mA and still have a receiver with better IMD performance than your typical level 7 diode ring mixer receiver. Stay tuned for more details on the CC1 front end as they are worked out in the NT7S shack.

10 Meter Contest!

Yes, it's almost time for my favorite contest of the year: the ARRL 10 Meter Contest. Ever since I moved into the current QTH, it has been a bit of a tradition for me to operate the contest as SSB QRP only. By virtue of entering that least-liked category, it has been no problem to collect some modest wallpaper from this contest. That's fun, but my real goal is to beat my previous score. Last year, I think I did fairly well with 7490 using a stock IC-718 and my ZS6BKW doublet. So this year, I'm going to have to step up my equipment game in order to have a good chance of besting last years score. I'm thinking some kind of gain antenna is going to be a must. If I can get a Moxon or small Yagi up around 20 feet and use an Armstrong rotor, that should help give me a little more oomph than last time. We'll see if I can get something built in the less than 3 weeks before the contest.