Nerd Famous

It's nice to see we hams, who I think suffer from a bit of an image as throwbacks in the larger maker community, get some recognition for the good stuff we've accomplished. Today on Hackaday, a nice article about Manhattan and Ugly construction was posted, with ample coverage given to the fact that a lot of the best exemplars of these techniques come from the world of amateur radio builders. I'm not certain about how others feel on this topic, but it seems to me that Hackaday is one of the preeminent blogs relating to our hobby, so I get quite excited when we get repped there.

hackaday.com-2016-05-04-getting-ugly-dead-bugs-and-going-to-manhattan-_2

Featured in this article are two names well-known in our circles, and guys that I'm proud to call my friends (although I have never personally met either in real life yet!). Todd VE7BPO, is renowned for his rigorous empirical work in circuit design, as well as his beautiful Ugly circuit creations. They feature one of his designs near the top of the article.

hackaday.com-2016-05-04-getting-ugly-dead-bugs-and-going-to-manhattan-_105

The other is Dave AA7EE, who is probably familiar to almost every reader, unless you just crawled out from living under a rock for the last decade. It's not difficult to see why they chose Dave's work for to illustrate Manhattan construction, as his is some of the best out there. Period. Also unsurprisingly, this is not the first time that Dave's creations have made it to Hackaday.

Well done, gentlemen! Way to show the maker world at large that we've got relevant skills for the 21st century hacker community!

 

Wideband Transmission #6

Happy New Year 2015!

2014 was a bit of a mixed bag here. It's been a transition year for Etherkit, as I reorganize and reorient the business for a renewed push to get the CC1 and other new products to market. I believe that good things are beginning to happen there.

On a personal level, my two boys have been doing fantastic. Noah started preschool and is really enjoying it. Eli is at a bit of a difficult age (the Terrible Twos) and is between baby and little kid, but he's got an amazing personality and is growing up so quickly. Jennifer and I celebrated five years of marriage and 11 years since our first date! Things haven't been perfect in the extended parts of our families, but at least in our household we've all been pretty healthy and have been able to enjoy many blessings.

Si5351A Breakout Board Campaign

There have been a fair number of neat projects I've seen using the Si5351A Breakout Board that I posted on OSHPark, along with my Si5351 Arduino library, which is absolutely wonderful. However, I realize that it's a pain to order PCBs and all of the parts separately, and that a kit or a finished board would be ideal.

I've decided to try something new in order to bring the Si5351A Breakout Board kit to market: we're going to try crowdfunding the first batch of kits. I'm going to set a modest goal to trigger the funding, but all orders will be welcome over the goal amount. In fact, I intend to set a stretch goal at some higher funding level to devote a certain number of hours to improving the Si5351 Arduino library, including:

  • Add tuning from 8 kHz to 1 MHz
  • Add tuning from 150 MHz to 160 MHz
  • Fix the bug that does not allow output over 125 MHz
  • Implement access to the phase register
  • Implement sub-Hz tuning for modes like WSPR
  • Other bug fixes

I also intend on lowering the BOM cost by removing the broadband output transformers, and offering multiple variants of the kit, including the option to add SMA connectors and a TCXO. I'm composing the campaign on Indiegogo right now, and I'm shooting for a launch in about 10 days. I'm hoping to gain experience with this campaign with the goal of using it to fund CC1 kitting later in the year.

Why am I telling you this now? Because I would like to let those of you are are interested in purchasing one (or otherwise interested in supporing Etherkit) get advance notice so that you can order on the first day that the campaign goes live. This will help to give the campaign more momentum and perhaps help to spread the word further. I will be sure to make a blog post here when the campaign goes live and tweet about it as well, so keep an eye on those channels if this is something that intrigues you.

Simple WSPR Transceiver using Si5351A

I came across this simple WSPR transceiver from KC3XM driven by one of my Si5351A Breakout Boards via @wm6h and Dangerous Prototypes. The WSPR transmitter is simply a BS170 driven by one of the Si5351 outputs, which is buffered by a logic gate and keyed by a standard PNP keying switch. Control of the Si5351 and keying of the transmitter is performed by a plain vanilla Arduino Uno (the code has been posted to GitHub).

This looked so simple to build that I had to give it a try. I quickly built up the transmitter portion, tacked on a 10 meter LPF (the original version is for 30 meters), modified the code for my callsign and grid, and changed the Si5351 output frequency to the 10 meter band. The transmitter put out nearly exactly 1 watt of RF (with only about 1.2 watts of DC input total) into 50 ohms and ran quite cool. Hooked up to my Moxon, it had no problem generating spots when pointed east and started on an even minute so as to properly synchronize. Fun stuff!

Generating PSK with an Arduino

If you haven't been following the blog of KO7M, you should be. Jeff has been doing a lot of experimentation with with NB6M and other home experimenters in Washington state, especially with stuff like the Minima and using microcontrollers in ham radio projects.

Lately, Jeff has been working on getting an Arduino to output PSK audio. He has a series of recent posts about it, but these two are probably the most important. The character timing is not quite right yet, but the basics of how to generate PSK via PWM audio signals are here. Good stuff!

Si5351 and Raspberry Pi

Another really great homebrewer blog is M0XPD's Shack Nasties (oh you Brits and your silly names) blog. Paul has been doing a lot of work with the Si5351 as well, and his latest post about the Si5351 is details of how he interfaced it with the Raspberry Pi. Excellent information to have, as the RPi is of course much more powerful than your garden variety Arduino.

Si5351A Investigations Part 8

In looking through the analytics here on the blog, I noticed a search term that has been regularly coming up near the top: Si5351 crosstalk. Realizing that I haven't yet presented data on this, it seemed like a good time to knock this one out, since it isn't that difficult of a measurement to make.

It appeared to be a wise idea to choose output frequencies that were non-harmonically related, so I decided on the following outputs:

  • CLK0: 22.444555 MHz
  • CLK1: 10.140123 MHz
  • CLK2: 57.456789 MHz

Each output was set to the maximum 8 mA current and each one was locked to PLLA, which was set at 900 MHz.

The measurement procedure was simple. I connected the spectrum analyzer to each output sequentially. The unused outputs were terminated in 50 Ω. For each measurement, I used a delta marker to measure the difference in amplitude between the desired signal from that output and the frequencies of the other two outputs.

Without further ado, allow me to present the spectrum analyzer plots.

Output port: CLK0 Crosstalk signal: CLK1
Output port: CLK0
Crosstalk signal: CLK1
Output port: CLK0 Crosstalk signal: CLK2
Output port: CLK0
Crosstalk signal: CLK2
Output port: CLK1 Crosstalk signal: CLK0
Output port: CLK1
Crosstalk signal: CLK0
Output port: CLK1 Crosstalk signal: CLK2
Output port: CLK1
Crosstalk signal: CLK2
Output port: CLK2 Crosstalk signal: CLK0
Output port: CLK2
Crosstalk signal: CLK0
Output port: CLK2 Crosstalk signal: CLK1
Output port: CLK2
Crosstalk signal: CLK1

I thought that perhaps these measurements would be a best-case scenario, and that leaving the unused output ports unterminated might produce even worse performance, but it turns out I was wrong. Below are the same measurements, but with an open circuit on the unused ports.

Output port: CLK0 Crosstalk signal: CLK1
Output port: CLK0
Crosstalk signal: CLK1
Output port: CLK0 Crosstalk signal: CLK2
Output port: CLK0
Crosstalk signal: CLK2
Output port: CLK2 Crosstalk signal: CLK0
Output port: CLK2
Crosstalk signal: CLK0
Output port: CLK1 Crosstalk signal: CLK2
Output port: CLK1
Crosstalk signal: CLK2
Output port: CLK2 Crosstalk signal: CLK0
Output port: CLK2
Crosstalk signal: CLK0
Output port: CLK2 Crosstalk signal: CLK1
Output port: CLK2
Crosstalk signal: CLK1

I'm not quite sure what to make of that. In practice, I haven't seen any problems in my receivers so far that I can trace back to crosstalk from adjacent channels. Of course, this probably won't do in a higher-performing receiver, but if you wanted to use the Si5351 in such a receiver perhaps you could find a way to put two or more on an I2C bus at the same time, then use only one output from each. My advice would be to turn off any channels you are not currently using, just to keep the other outputs clean.

I have no doubt that this data will be more ammunition for those who are convinced that the Si5351 is a terrible LO. I stand where I always have: this is an excellent IC for the price and you are hard pressed to find such capability and stability for such a low price anywhere else. If, knowing its limitations, the Si5351 meets your needs, then excellent! If not, that's fine too. Neither I, nor anyone else I have heard, has suggested that the Si5351 is a panacea or a substitute for a better oscillator such as the Si570. It's another tool to be put into our toolbox in the quest to stay relevant with the march of technology.

Quite a bit of work has been done in quantifying the performance of the Si5351 for amateur radio use, within the limitations of our modest home labs. Something that you don't see done with a lot of other new components these days. Have I made mistakes or overlooked some things? Almost certainly. I'm still learning how to apply a strict measurement discipline over all of my serious building activities, so this is a learning process for me as well. If you have some constructive criticism of any of my measurements or feel that I have neglected things, I absolutely welcome an email or comment on the blog. Let's try to hold ourselves to high standards as home experimenters without being unduly negative, as many of us continue in the journey of RF experimentation.

Dual Gate MOSFET Investigations - Intermodulation

A look into the intermod properties of a BF991 amplifier.

You may have seen in my previous post that I have been working on the latest (and hopefully final) major revision of the CC1. Many of the previous decisions on the radio architecture have been thrown out, perhaps most importantly the decision to use a dual-gate MOSFET as the mixer. In the quest for a replacement, I considered using the old standby, a diode ring mixer, but I wanted to be open to other possibilities as well. As shown in that last post, the KISS mixer from Chris Trask seems to have excellent intermod performance with relative simplicity. So the current plan is to try to build an IF chain using the KISS mixer and see if it will work well in the CC1.

Having quantified the performance of the KISS mixer, the current quest is to find an IF amplifier that will provide decent performance at a reasonable current "price". With an IIP3 of approximately +30 dBm (I believe it should be able to get the mixer there with some improvements in components), the limiting factor for IP3 performance in the IF chain will be the IF amplifiers. Consider that my current goals for the CC1 receiver are:

  • Dynamic range of around 100 dB
  • Decent sensitivity (less than -130 dB MDS in 400 Hz bandwidth)
  • Reasonable current consumption for portable use (< 60 mA)

In order to achieve this, I've determined (using the excellent Cascade08 program from W7ZOI's LADPAC software suite) that the IF amp that I choose will need the following characteristics:

  • OIP3 of at least +20 dBm (although higher is better since the amp is the limiting factor)
  • modest gain

The current candidate for the IF topology is similar to the design seen in Figure 6.89 in Experimental Methods in RF Design, with no gain until after the first IF filter. To that end, I've been looking a various amplifier designs to see if I could find something that would fit (or at least come close to) the requirements above. Bipolar amps are nice, but use a lot of current. MMICs were another possibility; the ones I have found do have about +20 dBm OIP3, but with around 20 mA of current draw and approximately 20 dB of gain, which means the IIP3 is not that great. I figured it wouldn't hurt to take a look at the dual-gate MOSFET again, as I know that at least they can use modest current and many have excellent noise figure.

Without getting into the weeds of every detail of the experiment that I tried, I'll just recap the important parts. Initially I used a BF998 with an L-network on gate 1 to transform the 2.2 kΩ input impedance of the amplifier to 50 Ω. A pot was provided to provide variable voltage bias to gate 2. Different permutations of source resistor and gate 2 bias were tried, and the best IIP3 I could get from that amplifier was about -3 dBm (with perhaps 14 dB of gain). OK, but not great. So I decided to give the BF991 a try and see what I could get out of it. Again, I tried many variations of source resistor and gate 2 bias, and was able to find a configuration that is somewhat promising.

BF991IF

You can see in the schematic above that I settled on a source resistor of 100 Ω and "dipped" the gate 2 pot for best IP3, which came out at 5.6 V of bias. I also found in previous trials that leaving the source bypass capacitor out improved the IP3 a few dB and decreased the gain a few dB, which was a worthy improvement. Input and output was matched for 50 Ω. The current consumption was only 4 mA, which is pretty great for an IF amp in a portable radio.

bf991ip2

Here is the capture of the OIP3 measurement from my DSA815-TG. Only 10 dB of gain, but that is OK as we wanted modest gain. The IIP3 measured +8 dBm, and when you add in the 10 dB of gain, the OIP3 is +18 dBm, which is pretty close to my original spec, and all for only 4 mA.

This all looks very reasonable. But there's one problem. The good IP3 is highly dependent on VDD and VG2, especially the gate 2 voltage. As this is going to be a production radio, there needs to be a reliable way to set VG2 during calibration, every time. Also it appears that I probably need some way to keep VDD stable over a variety of voltage inputs, such as a LDO voltage regulator (maybe 9 or 10 V would work). But I need as much headway as possible in VDD in order to get the most out of my dual-gate MOSFET amp. In my experience, they don't like being voltage-starved. There also appears to be a bit of dependency on the tuning of the input L-network, although that is not as pronounced as the other effects.

As it stands now, this is a promising candidate for the IF amp, but I'll have to find a way to reduce these dependencies quite a bit in order for it to be viable for a commercial product. That's my next line of inquiry, and I'll be sure to have a follow-up post if I am able to get around the remaining limitations

Wideband Transmission #5

Latest CC1 Progress

image

As you can see from the above photo, I have finished a significant portion of the digital side of the newest CC1 prototype and now I'm on to the receiver section. This weekend I finished my first pass of the audio chain and characterized the gain and frequency response of the chain. Next up is the design of the IF and front end of the receiver. This time I plan to do a much better job of characterizing the performance of entire radio, designing for specific critical receiver specifications, and iterating the design as necessary instead of holding on to dodgy performance from circuits.

Mixer Investigations and the Search for Better Dynamic Range

Since I decided to ditch the dual-gate MOSFET mixer front end, I've been considering what to replace it with. At first, I was thinking about using the ADE-1 for the mixer and product detector, but I've been intrigued with reading about H-Mode mixers over the last few weeks, which led me to the similar, but simpler KISS mixer by Chris Trask. That seemed like a good candidate for the CC1, with relative simplicity and better-than-average performance. Since good IP3 performance is the main characteristic of this mixer, I wanted to try measuring IIP3 at my own bench to see how it looked in a home made circuit with less than optimal parts and layout.

To get warmed up, I first attempted to measure the IIP3 of a few parts that I had on hand where I already knew IIP3 values to expect: the SBL-1 and the ADE-1. Using a DG1022 as the signal generators, my HFRLB as a hybrid combiner, and the DSA815TG, I was able to measure an IIP3 of +13 dBm for the SBL-1 and +17 dBm for the ADE-1, which is pretty much right on what other people have published.

image

Here is my test setup for measuring the KISS mixer performance. I deviated from the circuit described in the KISS mixer white paper in a few ways. First, I used a TI TS5A3157 analog switch, as I didn't have any Fairchild FST3157 on hand. I also used a hand-wound trifilar transformer on a BN2402-43 core instead of a nice transfomer from a company like Mini-Circuits. I drove the KISS mixer with +3 dBm from a Si5351. My measurement of IIP3 for this variant of the KISS mixer came out to +27 dBm, which seems reasonable given the poorer components I was using. Conversion loss was 7 dB. I'm going to try to measure it again with an actual FST3157 and a Mini-Circuits transformer in the near future, so it will be interesting to how much that will improve the IMD performance.

But honestly, I probably won't need better than +27 dBm performance if this mixer is used in the CC1. Since the CC1 is meant to be a trail-friendly radio with modest current consumption, I don't think I want to include the high current amplifier needed after the KISS mixer to get maximum performance out of it. Which is kind of a shame, but I figure that I should be able to keep RX current to around 50 to 60 mA and still have a receiver with better IMD performance than your typical level 7 diode ring mixer receiver. Stay tuned for more details on the CC1 front end as they are worked out in the NT7S shack.

10 Meter Contest!

Yes, it's almost time for my favorite contest of the year: the ARRL 10 Meter Contest. Ever since I moved into the current QTH, it has been a bit of a tradition for me to operate the contest as SSB QRP only. By virtue of entering that least-liked category, it has been no problem to collect some modest wallpaper from this contest. That's fun, but my real goal is to beat my previous score. Last year, I think I did fairly well with 7490 using a stock IC-718 and my ZS6BKW doublet. So this year, I'm going to have to step up my equipment game in order to have a good chance of besting last years score. I'm thinking some kind of gain antenna is going to be a must. If I can get a Moxon or small Yagi up around 20 feet and use an Armstrong rotor, that should help give me a little more oomph than last time. We'll see if I can get something built in the less than 3 weeks before the contest.

Si5351A Investigations Part 7

Here's the post I know that a lot of you have been waiting for. Buzz around the Si5351 has been picking up at a pretty rapid clip over the last month or so, but a lot of homebrewers have been hesitant to use it in their designs because one critical parameter has not yet been measured: phase noise.

Phase noise measurements seem to be one of the least easily accessible to the typical ham homebrewer, but fortunately for us, we have in our ranks some engineers with access to excellent T&M gear that most of us would never be able to afford for our home workbench. Thomas LA3PNA was able to put me in touch with one such engineer, John Miles KE5FX. I don't know much about John, but I should, as it looks like he has developed the TimePod phase noise measurement device and the TimeLab analysis software (which is very slick, I must say).

John was generous enough to make a variety of phase noise measurements on the Si5351A Breakout Board that I sent him. Below, I present some plots of the phase noise measurement that were taken at various frequencies and under a few different conditions.

Before I get to a brief commentary, here are the plots. The first two plots were taken at 3 MHz, first with 2 mA output current then at 8 mA output current. Then you will find 10 MHz, 13.371 MHz (in both fractional and integer divider modes), 14 MHz, 100 MHz, and then a composite plot of all of the different traces.

3_MHz_2_mA 3_MHz_8_mA 10_MHz_powerup_default overlay_frac_int_mode_13mhz 14_MHz_CLK0_with_CLK1_at_0 100_MHz_CLK1_PLL_auto_calc_8mA overlay

I believe that the plots speak for themselves fairly well. If you compare these results to the receivers in the Sherwood Engineering receiver table, I think you'll see that the Si5351 acquits itself quite nicely for such an inexpensive part. Personally, I think the Si5351 is eminently usable for many receiver applications, except perhaps the most high-performance. Certainly for the price, it's going to be extremely hard to beat. I hope this motivates those sitting on the fence to decide if the Si5351 will meet their needs.

Finally, I would like to share a new video of the Si5351 in action, courtesy of prolific builder Pete N6QW. Here's Pete having the very first QSO with his new SSB QRP rig built using one of the Adafruit Si5351A Breakout Boards:

I would like to sincerely thank KE5FX for taking the time to make these measurements for the community and for allowing me to share them with you. If you have any ideas for critical phase noise measurements that aren't included here, let me know in the comments and perhaps we can get those made as well.

Edit: I failed to mention that these measurements were taken with a plain old 25 MHz ECS crystal as the reference oscillator. With a higher-quality reference oscillator, one would expect even better phase noise performance.

Si5351A Update

I don't have a ton of new updates for you from the NT7S bench, but I wanted to give you a heads up on an error on the Si5351A Breakout Board Rev B and let you know about some exciting stuff brewing on the Si5351 scene.

When I created Rev B of the Si5351A Breakout Board, I attempted to create a PCB footprint that would allow dual-use of both the standard 25 MHz ECS reference oscillator crystal, but also a 25 MHz Fox TCXO in the same footprint. It was almost a good plan, but somehow I overlooked one detail. On the TCXO, VCC is applied to pin 4 and ground is pin 2. Unfortunately, on the ECS crystal, those two pins seem to be internally connected, but I missed that. So if you want to use the ECS crystal with the board, you can simply cut the trace providing +3.3V to pin 4 of the footprint, and your Si5351 will work fine. Otherwise, the power rail will be shorted to ground and you will have an unhappy board. I apologize for that oversight and I will work on getting a corrected PCB up on OSH Park in the near future.

In happier news, it seems to me that interest in the Si5351 is finally starting to really gain momentum. I've had a fair number of ham homebrewers contact with inquiries about the Si5351 and sharing their experiences with the IC so far. Although I don't subscribe, I've heard that there is quite a bit of chatter on Farhan's Minima mailing list about the possibility of substituting the current Si570 for a Si5351. Given that the Minima is meant to be a minimalist rig, I think this makes a lot of sense. There even some blog posts from others coming out now. For example, the always entertaining Shack Nasties blog by M0XPD now has some blog posts about initial experimentation with the Si5351 in a transceiver. I would put Paul's blog in your feed reader if I were you, even if you are only interested in RF experimentation in general.

This should be a good upcoming time for the cheap and cheerful little clock IC. I'm going to be experimenting with it in the next CC1. It should work great, with one output for the VFO, one for the BFO, and the last for the TX drive. As always, keep an eye on the blog and my Twitter account for further updates.

Goodbye to QRP Homebuilder

It's late at night here, but I wanted to write a short post, because this is very notable. I have unfortunately found out that the esteemed Todd Gale, VE7BPO took down his amazing site, the QRP/SWL Homebuilder. Todd's site has consistently been one of the best places on the web to get solid, entertaining, well-documented, and hype-free information on the RF circuits that we all love to build. The QRP Homebuilder has been the premier destination on the web for my favorite hobby for as long as I can remember.

Today's news is about as sad to me as when W7ZOI removed most of his RF experimentation materials as well. I could only hope to be half as talented as either of these two gentlemen, and we are all going to miss this most essential web site. I pray that some day soon we will find a new generation of experimenters who will be able to bring that same evidence-based RF work to the internet.

The good news is that all of that valuable documentation is not lost. Todd has graciously archived the last version of the site as a full-color PDF, with all of the schematics and colorful illustrations that you love. Todd is currently hosting the PDF on his server, but I wanted to mirror it here (with Todd's permission) in order to ensure that it has wider coverage.

Download the QRP/SWL Homebuilder PDF Archive

I'm not yet at liberty to discuss the circumstances of the decision that I have been told about, but I strongly believe that Todd himself will do that some day. I would like to thank Todd for his years of generous service and for blazing a trail in the RF experimentation community.

Edit: Good news! Todd already has a new site up and running, this time in the form of a blog. It currently only has a test post, but I would bookmark it and put it in your feed reader if I were you. Go forth and visit Popcorn QRP. I've added it to the blogroll. Best wishes on the new endeavor, Todd!

Si5351A Breakout Board Update

I've had a good response to the Si5351A Breakout Board when it was posted on Hackaday last month. There have even been a few folks who went through the trouble of ordering PCBs from OSHPark so that they could build their own copies of the board for experimentation. One of them, Tom AK2B, even constructed a complete receiver using the Si5351A Breakout Board and the RF Toolkit modules from kitsandparts.com. Check out the link to the nice-sounding audio in the embedded tweet below.

When the link to the Breakout Board was posted on Hackaday, I wasn't even sure that anyone would be interested, so the design was not as robust as it should have been for public use. But thanks to some suggestions from Tomas OK4BX and some of my own ideas, I've created a Rev B Breakout Board that has a number of improvements.

Si5351A Breakout Board Rev B
Si5351A Breakout Board Rev B

I increased the size of the board by 10 mm on the short side in order to accommodate some new circuitry. I could have kept the board the same size and put the new components on the back side of the board, but I thought it would be better to keep everything on the front. Thanks to Tomas' suggestion, I added simple MOSFET I2C level conversion so that the Si5351A can be properly interfaced with a 5 V microcontroller. I also added a 3.3 V LDO regulator and jumper blocks so that the I2C interface voltage and the 3.3 V source can be selected. The traces from the Si5351A to the output transformers were also screened with vias, which improved crosstalk between outputs by about -6 dB. I also increased the pad size for the SMT crystal in order to make it easier to hand solder. In addition, I added a provision for the crystal footprint to double as a footprint for a TCXO. So far, the crystal works fine, but I haven't ordered the TCXO yet in order to verify that it works as well, but I don't think there will be any problems as long as the crystal is working.

As I anticipated from a previous post, Adafruit has released their own version of a Si5351A breakout board. It looks like they use the same I2C level conversion scheme as my board, but that is where the similarity ends. The Adafruit board seems to be geared to using it strictly as a clock generator, where the Etherkit board is designed to be used in RF applications by providing output isolation via broadband transformers and screening of the output traces. The Etherkit board also has more flexible options for using the board in 5 V or 3.3 V environments.

You can order the new board from OSHPark here, and find the documentation for it on GitHub.

I need to do a bit more testing to ensure that everything is working as it needs to, but so far the preliminary tests look great. Assuming that everything with the new board checks out, there's a decent possibility that I will kitting at least one batch of these boards for sale. Stay Tuned.

For Noontime Net

I've been working on getting the little bugs out of the Si5351 SSB rig and making improvements to the circuit. Since SSB QRP operating can be a bit more challenging than CW QRP ops, Dave AA7EE suggested that I think about a speech processor IC to use in place of the op-amp microphone amplifier. He directed me to the Elecraft K2 schematic, which uses an Analog Devices SSM2166. I poked around the Analog website a bit and found a sister IC called the SSM2167. It's smaller, simpler, and cheaper than the SSM2166, which could make it perfect for this radio.  I ordered a couple of samples of each from speakerxpert and they rush-shipped them here within a few days.

So today I got around to installing the SSM2167 in the 40 meter SSB radio, set the compression level to about 10 dB, and took a look at the transmitter waveform on my oscilloscope (I can still kind of see the screen if I get some light shining on it from the side). There is a single resistor which sets the compression level, and by jumpering around it, I can set the level to 0 dB. By comparing the waveforms with compression at ~10 dB and then off, I could tell that the average transmit power was increased quite a bit with compression on.

Next, I decided to check-in to the Noontime Net to see how it would work on the air and hopefully get an audio report. Luck would have it that net control Leslie N7LOB was very strong here, so I knew I should have no trouble checking in today. Also I was fortunate to have a strong signal from Lynn KV7L, the gentleman who donated the SA602s that are used in the radio. I've got a raw clip of my check-in below, which I hope to incorporate into a more polished video a bit later.

As you can tell from Lynn, 10 dB of compression might be a bit much for something like checking into a net. I changed the resistor to set compression at around 6 dB, which should be more appropriate for this type of use. It also sounds like some folks on the Noontime Net want to see some photos of the rig, so here are a few taken with my tablet. Not the best quality, but it should give you an idea of what it looks like until I can get my "real" camera back and take better photos.

PC_20140702_134826_PerfectlyClear PC_20140702_135131_PerfectlyClear PC_20140702_135139_PerfectlyClear